How well do global climate models simulate the transport of momentum, heat and moisture into the California region?

CEC Fifth Annual Climate Change Conference: New Scientific Findings on Impacts,
Adaptation and Mitigation
Sacramento Convention Center, CA,
8 September, 2008

Outline

- Future precipitation changes for California
- Model validation how good are AOGCMs at simulating present-day precipitation?
- Simulation of western boundary fluxes
- Effect of ENSO on boundary fluxes
- Conclusions

WHAT DO AOGCMs SAY ABOUT FUTURE PRECIPITATION?

Average annual precipitation change (%)

Average DJF precipitation change (%)

SUMMARY OF RESULTS FOR CALIFORNIA

(DJF: 42.5-52.5N, 115-125W)

Area used for defining precipitation change

Summary of DJF precipitation change results for California


```
*** SCALED AREA-AVERAGE CHANGE RESULTS FOR INDIVIDUAL MODELS ***
AEROSOLS ARE INCLUDED IN THESE RESULTS
*** 20 MODELS : VARIABLE = PRECIP -- LINEAR SCALING : SEASON = DJF
*** DEFINITION 2 RESULTS ONLY *** : 20 CASES
*** MAGICC MODEL = DEFAULT : SCENARIO = REFRNCE : YEAR = 2036
*** TOTAL GLOBAL-MEAN Delta-T =
                                  .998 degC
GRID BOX CENTRAL POINTS (2.5deg by 2.5deg GRID)
LATITUDE RANGE = 32.5 TO
                            42.5 degreesN
LONGITUDE RANGE = -125.0 TO -115.0 degreesE
MODEL = BCCRD2 : AREA AVE = 11.011
                                     (%)
MODEL = CCMAD2 : AREA AVE =
                            -.789
                                     (%)
MODEL = CCSMD2 : AREA AVE =
                             6.647
                                     (%)
MODEL = CNRMD2 : AREA AVE =
                             2.102
                                     (%)
MODEL = CSIRD2 : AREA AVE = -11.480
                                     (%)
MODEL = ECHOD2 : AREA AVE = -3.309
                                     (%)
MODEL = FGOAD2 : AREA AVE = -5.653
                                     (%)
                                          4 models show
MODEL = GF2OD2 : AREA AVE = -14.474
                                    (%)
MODEL = GF21D2 : AREA AVE = -5.518 (%)
                                          increase, 14 models
MODEL = GIEHD2 : AREA AVE = -11.726
                                    (%)
MODEL = GIERD2 : AREA AVE = -19.138
                                     (%)
                                          show decrease.
MODEL = INMCD2 : AREA AVE =
                           7.521
                                     (%)
MODEL = IPSLD2 : AREA AVE = -11.844
                                     (%)
MODEL = MIHID2 : AREA AVE = -7.889
MODEL = MIMED2 : AREA AVE = -26.210
                                     (%)
MODEL = ECH5D2 : AREA AVE = -14.281
                                     (%)
MODEL = MRI2D2 : AREA AVE = -6.740
                                     (%)
MODEL = PCM1D2 : AREA AVE = -.324
                                     (%)
MODEL = HAD3D2 : AREA AVE = -14.500
                                     (%)
MODEL = HADGD2 : AREA AVE = -10.249
                                     (%)
```

(%)

MODEL = MODBAR : AREA AVE = -6.842

Average decrease, 6.8% per 1degC global warming.

Probability of precipitation increase: DJF

CA precipitation change summary

- On average, models show reduced precipitation
- There are considerable inter-model differences
- Based on these differences, the odds in favor of reduced precipitation are about 2:1

HOW GOOD ARE MODELS AT SIMULATING PRESENT-DAY PRECIPITATION?

% precipitation error, annual: Average over 19 AR4/CMIP3 models

% precipitation error, DJF: Average over 19 AR4/CMIP3 models

DJF precipitation errors: Individual models

PRECIPITATION VALIDATION OVER THE CALIFORNIA REGION

Areas used for model validation

Model/observed precipitation comparison

				Pattern		<u> </u>	Bias	
				Correl.			Bias	
RANK	MODEL	Flux	Globe	49	16	Globe	49	16
		Adi?		boxes	boxes		boxes	boxes
1	MRI	YES	0.886	0.936	0.973	-0.084	0.559	0.895
2	GFDL2.0		0.868	0.887	0.923	0.091	1.285	1.792
3	HadGEM		0.797	0.934	0.951	0.385	0.745	0.477
4	MIROChi		0.800	0.899	0.926	0.281	1.909	2.283
4	ECHAM5		0.808	0.900	0.905	0.247	1.390	1.621
6	ECHO-G	YES	0.910	0.868	0.831	0.128	0.813	0.777
7	HadCM3		0.858	0.829	0.946	0.230	1.501	2.545
8	CCCMA	YES	0.888	0.884	0.827	-0.010	0.786	0.820
9	GFDL2.1		0.857	0.864	0.886	0.215	1.504	2.107
10	IPSL		0.808	0.854	0.927	-0.090	1.616	2.663
11	CSIRO		0.814	0.867	0.870	-0.161	1.512	1.730
12	CNRM		0.772	0.857	0.909	0.540	0.787	0.697
13	CCSM3.0		0.797	0.848	0.856	0.160	1.231	1.116
14	PCM1		0.665	0.894	0.830	0.343	0.867	0.824
15	MIROCmed		0.833	0.824	0.694	0.035	1.002	0.796
16	GISS-ER		0.774	0.845	0.843	0.297	1.589	2.236
17	FGOALS		0.816	0.619	0.431	0.307	2.465	2.248
18	BCCR		0.793	0.794	0.801	0.307	0.409	0.085
19	INM	YES	0.700	0.783	0.669	0.116	0.963	0.892
20	GISS-EH		0.733	0.492	-0.066	0.340	1.185	1.278
	Model		0.910	0.906	0.892	0.184	1.206	1.394
	mean							

Rank based on cumulative correlation rank.

Best 3 in blue.

Worst 3 in red

Bias in mm/day, model minus obs.

(1 mm/day = 14.4 in./yr)

Globe uses annual precipitation. Regions use DJF precipitation.

Precipitation validation summary

- Models show a strong positive bias (i.e., they are too wet)
- There are very large differences in model skill

SIMULATIONS OF FLUXES AT THE WESTERN BOUNDARY (CCSM3.0 vs Reanalyses)

Boundary is at 130W, from 20-55N

Calculating fluxes

The monthly-mean westerly flux for variable X at a given height and latitude is defined by

$$F = \langle uX \rangle$$

where u is the westerly wind component, and < > denotes the average over a month of values of u and X taken at 6-hourly intervals.

Note that $\langle uX \rangle \neq \langle u \rangle \langle X \rangle$, but time series of these two quantities are highly correlated.

Westerly windspeed at 130W

Moisture flux at 130W

Model vs observed comparison of jet characteristics

EFFECT OF ENSO ON FLUXES

Dependence of momentum flux on ENSO

Lag correlation: momentum flux vs ENSO

In observations. ENSO explains almost 40% of the variance. In the model, ENSO explains only 8% of the variance.

Summary of ENSO effects

- Observed flux variability is significantly related to ENSO
- The model shows a much weaker relationship
- In order to reliability estimate future inter-annual and inter-decadal precipitation variability we must

Improve the ENSO-flux link in models

Improve model simulations of ENSO

ENSO IMPROVEMENTS

Improvements in Nino3 SST power spectra

Improvements in ENSO (Nino 3) SST simulations

From Jerry Meehl, NCAR

Summary and conclusions

- Based on inter-model differences, the odds are approximately 2:1 that precipitation will decrease in California
- In simulating present-day precipitation, all models appear to be biased high
- In one model (CCSM3), simulations of the jet are reasonable
- In CCSM3, moisture flux simulations are also reasonable, but the fluxes tend to be less than in the re-analyses
- CCSM3 significantly under-estimates the effect of ENSO on fluxes.

Thankyou